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ABSTRACT 

Lower back pain (LBP) due to awkward posture during 

manual lifting has been a serious problem in various 

workplaces. Stooping and squatting are the major 

postures for manual lifting. Previous studies have 

recommended the use of a squatting posture during lifting 

to prevent LBP. Monitoring and feedback of these 

stooping and squatting postures are necessary to ensure 

the use of the squatting posture. The objective of this 

study was to develop and evaluate a method for 

recognizing stooping and squatting postures during 

manual lifting. The proposed method recognizes stooping 

and squatting postures by using machine learning and 

digital images obtained from an ordinary monocular 

camera. The proposed method was tested on lifting 

posture images from the OrthoLoad database. The results 

showed that the proposed method could recognize 

stooping and squatting postures with 0.75 accuracy. 

Furthermore, the awkward stooping posture could be 

recognized by the proposed method with 0.80 recall 

(sensitivity). These results indicate the possibility that the 

proposed method can be used for lifting posture 

monitoring to prevent LBP. 

 

Keywords: manual lifting, stooping, squatting, posture 
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1. INTRODUCTION 

 Lower back pain (LBP) due to an awkward posture 

during manual lifting has been a serious problem in 

various workplaces, such as construction [1], [2], [3].  

In the construction field, worker experience LBP due to 

manual handling for materials such as brick and stone 

[4], [5]. These lifting motions are required for specific 

tasks of construction such as laying out plates, sorting 

wall materials, and standing wall [6]. Furthermore, 

LBPs due to manual lifting are caused in other 

workplaces such as medical and industry fields [7], [8], 

[9]. Thus, preventing LBP due to manual lifting is 

important for occupational health.  

Stooping and squatting are the major postures for 

manual lifting [10]. The stooping posture involves 

lifting by back bending [10]. The squatting posture 

involves lifting by flexion and extension of the knee 

[10]. Previous studies have indicated the possibility that 

squatting posture could reduce lumbar loads during 

manual lifting by using lower limb movements [11], 

[12]. In addition, the Japanese Minister of Health, 

Labour and Welfare have been recommending to use 

squatting posture for preventing LBP [13]. From this 

background, it is considered that instruction in the 

squatting posture is important for preventing LBP. 

Furthermore, monitoring and feedback of stooping and 

squatting postures are necessary for instruction in 

squatting posture. Note possibility that stooping posture 

will be recommended in some cases because other 

previous study reported some musculoskeletal loads of 

stooping were smaller than squatting [14]. Whether 

squatting or stooping is suitable, monitoring of these 

postures is considered necessary.  

The objective of this study was to develop and 

evaluate a method for recognizing stooping and 

squatting postures during manual lifting. 

2. LITERATURE REVIEW 

Generally, occupational postures are recorded and 

evaluated by human observers [15], [16], [17]. However, 

there are several limitations, such as repeatability and 

sampling intervals in human observation [15], [16], [17]. 

In addition, it is considered that human observation of 

many occupational postures causes fatigue in observers. 

Therefore, an automatic posture recognition system is 

required for occupational health.  

Posture recognition systems for occupational health 

were developed by various devices. Combination of 

wearable textile sensor shirt and machine learning could 

recognize sitting postures [18]. Insole pressure sensors 

contributed to recognize various postures such as walking, 

standing, and manual handling in construction fields [19], 

[20], [21]. Images and depth information obtained from 

RGB-D sensors such as Kinect were used for recognition 
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of upper limb, trunk, and lower limb for occupational 

health [22], [23], [24], [25]. Inertial sensors can measure 

postures and movements related to occupational health 

[26], [27], [28]. Furthermore, light detection and ranging 

(LiDAR) is used to obtain depth information for posture 

recognition in occupational health [29]. These sensors 

can be used for posture recognition for occupational 

health. However, it is considered that specific sensors 

such as textile sensor shirt, insole pressure sensors, 

Kinect, and LiDAR are difficult to apply various fields 

because these specific sensors are not common for 

workers.  In addition, it is difficult to inertial sensors in 

long term measurement since inertial sensors have 

problems due to drift [30].  

Digital images obtained from ordinary monocular 

cameras are considered useful input data for posture 

recognition systems because they are also used in current 

human observations [16]. A previous study developed a 

posture recognition method for lifting postures using 

ordinary monocular images and image processing [31]. 

This method can recognize lifting postures based on the 

height to width ratio of the bounding box for a worker 

[31]. However, the height and width ratio of the bounding 

box may be affected by the body shape or object size for 

lifting. Combination of monocular camera and techniques 

of computer vision such as convolutional neural network 

(CNN) could measure postures and movements for 

occupational health [32], [33], [34], [35]. However, 

previous studies using CNN did not focus on suitable and 

unsuitable manual lifting such as squatting and stooping. 

From these literature reviews, we propose the 

monocular digital image-based automatic lifting posture 

recognition method without specific sensors. In addition, 

bounding box is not used for image processing of the 

proposed method for avoiding effects from the body 

shape or object size. 

3. PROPOSED METHOD 

An overview of the proposed method is shown in 

Figure 1. The proposed method recognizes stooping and 

squatting postures by using monocular digital images and 

machine learning. In this study, machine learning model 

was trained via Teachable Machine that is web service for 

developing machine learning model [36], [37]. Teachable 

Machine had been applied for recognition model for 

various targets in science, engineering, and clinical field 

[38], [39], [40], [41]. Teachable Machine was selected for 

this study because this platform using graphical user 

interface (GUI) is easy to use for health managers who 

are not experts in computer vision. 

The proposed method recognizes stooping and 

squatting postures by trained MobileNets model [42] via 

Teachable Machine. MobileNets is selected for the 

proposed method because MobileNets could be used in 

previous studies for applications using image recognition 

[43]. The parameters of the machine learning model are 

listed in Table 1. The trained machine learning model 

calculated the probability for both stooping and squatting 

postures. A posture with a higher probability is the output 

of recognition.  

 

 
Figure 1. Overview of proposed method 

 

Table 1. Specification of machine learning model 

 

Parameter Value 

Algorithm MobileNets [42] 

Environment Teachable Machine [36] 

Epoch 200 

Batch Size 16 

Learning Rate 0.0001 

4. EVALUATION 

The proposed method was tested using stooping and 

squatting images from a public database. Stooping and 

squatting images were extracted from the OrthoLoad 
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database [44]. Extracted images of stooping and squatting 

postures on the sagittal plane were labeled based on 

descriptions of knee and back postures (bent or straight) 

provided in the OrthoLoad database. A total of 100 

images (50 images for each posture) were extracted and 

labeled from the OrthoLoad database. Table 2 shows the 

examples of ID list for images which were used in this 

evaluation. These images can be accessed via the listed 

ID and the OrthoLoad database [44]. Details of images 

such as background, brightness and contrast can be 

confirmed by these images at OrthoLoad database [44]. 

The proposed method was trained and tested using 10-

folds cross validation with the labeled images. Figure 2 

shows an example of a screen shot for training and testing 

of the proposed method via Teachable Machine.  

Accuracy, precision, recall (sensitivity), and F1 score 

were calculated as evaluation indices from the confusion 

matrix of posture recognition. These values are used in 

evaluation of machine learning models in various fields 

[45]. Accuracy measures the overall proportion of correct 

recognized postures. Precision is an indicator for the 

proportion of correct recognition for each posture.  Recall 

is an indicator of completeness of recognition for each 

posture. F1 score is calculated by harmonic means of 

precision and recall. F1 score is an indicator of balance of 

precision and recall. A great F1 score means that both 

precision and recall are great. These values were 

calculated using Equations 1–4: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  



𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   



𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   



𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

where TP is the true positive, TN is the true negative, FP 

is the false positive, and FN is the false negative. Note 

that the precision, recall, and F1 score were calculated for 

each posture class.  

 

 
Figure 2. Training and testing via Teachable Machine 

Table 2.  Examples of References at OrthoLoad [44] 

 

Data ID at OrthoLoad [44] Lifting Posture 

wp1_101210_1_101 Stooping 

wp2_071207_1_79 Stooping 

wp4_270808_1_46 Stooping 

wp5_280311_1_122 Stooping 

wp1_270808_1_42 Squatting 

wp2_071207_1_75 Squatting 

wp4_101210_1_151 Squatting 

wp5_280311_1_126 Squatting 

5. RESULTS 

A confusion matrix for posture recognition is 

presented in Table 3. A total of 40 stooping postures 

could be correctly recognized by the proposed method. In 

addition, a total of 35 squatting postures could be 

correctly recognized by the proposed method. On the 

other hand, the other 10 squatting postures were 

incorrectly recognized as stooping posture. Furthermore, 

the other 15 stooping postures were incorrectly 

recognized as squatting postures. 

The results showed that the proposed method could 

recognize stooping and squatting postures with 0.75 

accuracy.  Figure 3 to 5 show the precision, recall, and F1 

scores of the proposed method. The precision, recall, and 

F1 score were greater than 0.70 in both stooping and 

squatting. The precision and confusion matrix indicated 

that squatting postures were more correctly recognized 

than stooping postures were. The recall and confusion 

matrix indicated that stooping postures were recognized 

more comprehensively than squatting postures.  

 

Table 3. Confusion matrix of posture recognition 

 

Confusion Matrix 

Predicted 

Stooping Squatting 

Actual 

Stooping 40 10 

Squatting 15 35 
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Figure 3. Precision of posture recognition 

 

 
Figure 4. Recall of posture recognition 

 

 
Figure 5. F1 Score of posture recognition 

6. DISCUSSION 

The experimental results showed that the proposed 

method could recognize stooping and squatting with 0.75 

accuracy. A previous study reported that the inter-

observer reliability of lower limb posture recognition in 

human observation was 0.66 to 0.97 [46]. From this 

previous report, it is considered that 0.75 accuracy of the 

proposed method is comparable to that of human 

observations.  

As mentioned previously, this study suggests that 

stooping postures should be recognized and improved to 

prevent LBP due to manual lifting. The proposed method 

could comprehensively recognize stooping postures with 

0.80 recall (sensitivity). These results indicate the 

possibility that the proposed method can be applied to the 

automatic monitoring of manual lifting postures to 

prevent LBP. Note that a recognition method between 

lifting and other postures such as standing and sitting 

might be required because an automatic monitoring 

system should initially recognize lifting activities from 

occupational activities in the workspace.  

The limitation of this study was that the posture 

images were limited to the sagittal plane. Camera angles 

might affect accuracy, precision, recall, and F1 score in  

posture recognition. Thus, machine learning models 

should be trained and tested by further images with 

various camera angles for improving performances of 

posture recognition. In addition, light conditions of 

images which were used in this study were only day light 

conditions. The proposed method should be tested for 

night light conditions. In this study, the number of trained 

images was only 90 for each fold in 10-folds cross 

validation. More trained images might contribute to 

improving accuracy of the proposed method. In the future 

works, the number of images might be increased for 

improving the proposed method. In addition, several 

techniques of computer vision such as data augmentation 

[47], [48] will be applied for increasing the number of 

images.  

Vision-based measurement methods, including the 

proposed method, can accurately measure human 

movement [49]. However, these vision-based methods 

have limitations in their measurement ranges. Thus, it is 

possible that the proposed method will be used 

concomitantly with wearable sensor-based methods  [50] 

for posture monitoring in the workspace. 

7. CONCLUSION 

In this study, we propose a recognition method for 

stooping and squatting postures during manual lifting. 

The experimental results indicate that the proposed 

method can recognize stooping and squatting postures in 

manual lifting. The findings of this study provide an 

approach using only a monocular camera for preventing 

LBP due to manual lifting in occupational health. In a 

future study, the proposed method will be modified and 

investigated under various conditions. 
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